55 research outputs found

    Optical recognition of modern and Roman coins

    Get PDF
    The recently granted EU project COINS aims to contribute substantially to the fight against illegal trade and theft of coins that appears to be a major part of the illegal antiques market. A central component of the permanent identification and traceability of coins is the underlying image recognition technology. However, currently available algorithms focus basically on the recognition of modern coins. To date, no optical recognition system for ancient coins has been successfully researched. It is a challenging task to work with medieval coins since they are – unlike modern coins – not mass manufactured. In this project, the recognition of coins will be based on new algorithms of pattern recognition and image processing, in a field – classification and identification of medieval coins – as yet unexplored. Since the project recently started, preliminary results and work already performed in this field are presented and discussed

    Human Action Recognition in Egocentric Perspective Using 2D Object and Hands Pose

    Full text link
    Egocentric action recognition is essential for healthcare and assistive technology that relies on egocentric cameras because it allows for the automatic and continuous monitoring of activities of daily living (ADLs) without requiring any conscious effort from the user. This study explores the feasibility of using 2D hand and object pose information for egocentric action recognition. While current literature focuses on 3D hand pose information, our work shows that using 2D skeleton data is a promising approach for hand-based action classification, might offer privacy enhancement, and could be less computationally demanding. The study uses a state-of-the-art transformer-based method to classify sequences and achieves validation results of 94%, outperforming other existing solutions. The accuracy of the test subset drops to 76%, indicating the need for further generalization improvement. This research highlights the potential of 2D hand and object pose information for action recognition tasks and offers a promising alternative to 3D-based methods

    3D Acquisition of Archaeological Ceramics and Web-Based 3D Data Storage

    Get PDF
    Motivated by the requirements of modern archaeology, we are developing an automated system for archaeological classification and reconstruction of ceramics. The goal is to create a tool that satisfies the criteria of accuracy, performance (findings/hour), robustness, transportability, overall costs, and careful handling of the findings. Following our previous work, we present new achievements on the documentation steps for 3D acquisition, 3D data processing, and 3D reconstruction. We have improved our system so that it can handle large quantities of ceramic fragments efficiently and computes a more robust orientation of a fragment. In order to store the sherd data acquired and hold all the information necessary to reconstruct a complete vessel, a database for archaeological fragments was developed. We will demonstrate practical experiments and results undertaken onsite at different excavations in Israel and Peru

    Improved motion segmentation based on shadow detection

    Get PDF
    In this paper, we discuss common colour models for background subtraction and problems related to their utilisation are discussed. A novel approach to represent chrominance information more suitable for robust background modelling and shadow suppression is proposed. Our method relies on the ability to represent colours in terms of a 3D-polar coordinate system having saturation independent of the brightness function; specifically, we build upon an Improved Hue, Luminance, and Saturation space (IHLS). The additional peculiarity of the approach is that we deal with the problem of unstable hue values at low saturation by modelling the hue-saturation relationship using saturation-weighted hue statistics. The effectiveness of the proposed method is shown in an experimental comparison with approaches based on RGB, Normalised RGB and HSV

    Ambient Assisted Living: Scoping Review of Artificial Intelligence Models, Domains, Technology, and Concerns

    Get PDF
    Background: Ambient assisted living (AAL) is a common name for various artificial intelligence (AI)—infused applications and platforms that support their users in need in multiple activities, from health to daily living. These systems use different approaches to learn about their users and make automated decisions, known as AI models, for personalizing their services and increasing outcomes. Given the numerous systems developed and deployed for people with different needs, health conditions, and dispositions toward the technology, it is critical to obtain clear and comprehensive insights concerning AI models used, along with their domains, technology, and concerns, to identify promising directions for future work. Objective: This study aimed to provide a scoping review of the literature on AI models in AAL. In particular, we analyzed specific AI models used in AАL systems, the target domains of the models, the technology using the models, and the major concerns from the end-user perspective. Our goal was to consolidate research on this topic and inform end users, health care professionals and providers, researchers, and practitioners in developing, deploying, and evaluating future intelligent AAL systems. Methods: This study was conducted as a scoping review to identify, analyze, and extract the relevant literature. It used a natural language processing toolkit to retrieve the article corpus for an efficient and comprehensive automated literature search. Relevant articles were then extracted from the corpus and analyzed manually. This review included 5 digital libraries: IEEE, PubMed, Springer, Elsevier, and MDPI. Results: We included a total of 108 articles. The annual distribution of relevant articles showed a growing trend for all categories from January 2010 to July 2022. The AI models mainly used unsupervised and semisupervised approaches. The leading models are deep learning, natural language processing, instance-based learning, and clustering. Activity assistance and recognition were the most common target domains of the models. Ambient sensing, mobile technology, and robotic devices mainly implemented the models. Older adults were the primary beneficiaries, followed by patients and frail persons of various ages. Availability was a top beneficiary concern. Conclusions: This study presents the analytical evidence of AI models in AAL and their domains, technologies, beneficiaries, and concerns. Future research on intelligent AAL should involve health care professionals and caregivers as designers and users, comply with health-related regulations, improve transparency and privacy, integrate with health care technological infrastructure, explain their decisions to the users, and establish evaluation metrics and design guidelines. Trial Registration: PROSPERO (International Prospective Register of Systematic Reviews) CRD42022347590; https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022347590This work was part of and supported by GoodBrother, COST Action 19121—Network on Privacy-Aware Audio- and Video-Based Applications for Active and Assisted Living

    State of the art of audio- and video based solutions for AAL

    Get PDF
    Working Group 3. Audio- and Video-based AAL ApplicationsIt is a matter of fact that Europe is facing more and more crucial challenges regarding health and social care due to the demographic change and the current economic context. The recent COVID-19 pandemic has stressed this situation even further, thus highlighting the need for taking action. Active and Assisted Living (AAL) technologies come as a viable approach to help facing these challenges, thanks to the high potential they have in enabling remote care and support. Broadly speaking, AAL can be referred to as the use of innovative and advanced Information and Communication Technologies to create supportive, inclusive and empowering applications and environments that enable older, impaired or frail people to live independently and stay active longer in society. AAL capitalizes on the growing pervasiveness and effectiveness of sensing and computing facilities to supply the persons in need with smart assistance, by responding to their necessities of autonomy, independence, comfort, security and safety. The application scenarios addressed by AAL are complex, due to the inherent heterogeneity of the end-user population, their living arrangements, and their physical conditions or impairment. Despite aiming at diverse goals, AAL systems should share some common characteristics. They are designed to provide support in daily life in an invisible, unobtrusive and user-friendly manner. Moreover, they are conceived to be intelligent, to be able to learn and adapt to the requirements and requests of the assisted people, and to synchronise with their specific needs. Nevertheless, to ensure the uptake of AAL in society, potential users must be willing to use AAL applications and to integrate them in their daily environments and lives. In this respect, video- and audio-based AAL applications have several advantages, in terms of unobtrusiveness and information richness. Indeed, cameras and microphones are far less obtrusive with respect to the hindrance other wearable sensors may cause to one’s activities. In addition, a single camera placed in a room can record most of the activities performed in the room, thus replacing many other non-visual sensors. Currently, video-based applications are effective in recognising and monitoring the activities, the movements, and the overall conditions of the assisted individuals as well as to assess their vital parameters (e.g., heart rate, respiratory rate). Similarly, audio sensors have the potential to become one of the most important modalities for interaction with AAL systems, as they can have a large range of sensing, do not require physical presence at a particular location and are physically intangible. Moreover, relevant information about individuals’ activities and health status can derive from processing audio signals (e.g., speech recordings). Nevertheless, as the other side of the coin, cameras and microphones are often perceived as the most intrusive technologies from the viewpoint of the privacy of the monitored individuals. This is due to the richness of the information these technologies convey and the intimate setting where they may be deployed. Solutions able to ensure privacy preservation by context and by design, as well as to ensure high legal and ethical standards are in high demand. After the review of the current state of play and the discussion in GoodBrother, we may claim that the first solutions in this direction are starting to appear in the literature. A multidisciplinary 4 debate among experts and stakeholders is paving the way towards AAL ensuring ergonomics, usability, acceptance and privacy preservation. The DIANA, PAAL, and VisuAAL projects are examples of this fresh approach. This report provides the reader with a review of the most recent advances in audio- and video-based monitoring technologies for AAL. It has been drafted as a collective effort of WG3 to supply an introduction to AAL, its evolution over time and its main functional and technological underpinnings. In this respect, the report contributes to the field with the outline of a new generation of ethical-aware AAL technologies and a proposal for a novel comprehensive taxonomy of AAL systems and applications. Moreover, the report allows non-technical readers to gather an overview of the main components of an AAL system and how these function and interact with the end-users. The report illustrates the state of the art of the most successful AAL applications and functions based on audio and video data, namely (i) lifelogging and self-monitoring, (ii) remote monitoring of vital signs, (iii) emotional state recognition, (iv) food intake monitoring, activity and behaviour recognition, (v) activity and personal assistance, (vi) gesture recognition, (vii) fall detection and prevention, (viii) mobility assessment and frailty recognition, and (ix) cognitive and motor rehabilitation. For these application scenarios, the report illustrates the state of play in terms of scientific advances, available products and research project. The open challenges are also highlighted. The report ends with an overview of the challenges, the hindrances and the opportunities posed by the uptake in real world settings of AAL technologies. In this respect, the report illustrates the current procedural and technological approaches to cope with acceptability, usability and trust in the AAL technology, by surveying strategies and approaches to co-design, to privacy preservation in video and audio data, to transparency and explainability in data processing, and to data transmission and communication. User acceptance and ethical considerations are also debated. Finally, the potentials coming from the silver economy are overviewed.publishedVersio

    Human Centric Facial Expression Recognition

    Get PDF
    Facial expression recognition (FER) is an area of active research, both in computer science and in behavioural science. Across these domains there is evidence to suggest that humans and machines find it easier to recognise certain emotions, for example happiness, in comparison to others. Recent behavioural studies have explored human perceptions of emotion further, by evaluating the relative contribution of features in the face when evaluating human sensitivity to emotion. It has been identified that certain facial regions have more salient features for certain expressions of emotion, especially when emotions are subtle in nature. For example, it is easier to detect fearful expressions when the eyes are expressive. Using this observation as a starting point for analysis, we similarly examine the effectiveness with which knowledge of facial feature saliency may be integrated into current approaches to automated FER. Specifically, we compare and evaluate the accuracy of ‘full-face’ versus upper and lower facial area convolutional neural network (CNN) modelling for emotion recognition in static images, and propose a human centric CNN hierarchy which uses regional image inputs to leverage current understanding of how humans recognise emotions across the face. Evaluations using the CK+ dataset demonstrate that our hierarchy can enhance classification accuracy in comparison to individual CNN architectures, achieving overall true positive classification in 93.3% of cases
    corecore